

OFFSHORE WIND ENERGY FREQUENTLY ASKED QUESTIONS

What We Know About Orsted's South Fork Wind Project

As the offshore wind industry expands in U.S. waters, it's important to understand both the benefits and impacts offshore wind farms can have on our marine environment, coastal economies, and recreational use areas. Though the Surfrider Foundation (Surfrider) encourages the use of renewable energy to prevent the dangerous threats to our coasts and ocean from exacerbated climate change and fossil fuels, offshore wind farms need to be designed carefully to prevent negative ecological, economic and recreational impacts. At this point in the project, Surfrider is most concerned about the cumulative impacts to birds and whales, poorly planned power cable landings, and the need for increased public engagement.

Surfrider is not affiliated with this offshore wind farm proposal, but due to the project's potential to directly impact nearby coastlines and coastal communities, Surfrider developed this list of common inquiries. Answers were assembled by Surfrider staff with help from experts on coastal resources and offshore wind energy. If you have additional questions, please contact Matt Gove at mgove@surfrider.org.

Approval Process Questions	Page 1
Human Use Questions	Page 5
Environmental Questions	Page 6
Economic Questions	Page 11
Engineering Questions	Page 12

APPROVAL PROCESS QUESTIONS

1. What is Orsted's South Fork Wind Project?

A proposed offshore wind power generating project that would place up to 15 wind turbines about 35 miles from Montauk, offshore of New York, Rhode Island and Massachusetts.¹ Depending on the final turbines chosen for the project, each turbine would generate 8 to 13 MW (megawatts), and stand about 700 to 850 feet above the waterline. The project intends to power 66,000 typical homes, which will help New York State achieve its goal of 70% renewable energy by 2030. "South Fork Wind" is the official name of the project, and "Orsted" is the name of the private company proposing the project. Orsted bought the smaller wind company "Deepwater Wind" in 2018, taking over this project. Orsted plans to connect the project to land in the East Hampton area (specifically Beach Lane in Wainscott), to add up to 132 MW of power to Long Island's electricity grid. Orsted is planning to begin a two year construction process in 2021 if approved. The rights to propose development of wind power generating projects in the area were purchased in 2013 from the federal government. The project would be designed to operate for 25 years.²

2. What is Surfrider's role in these proposed offshore wind projects?

Surfrider is not affiliated with the development of offshore wind projects, yet consistent with Surfrider's mission to protect and enjoy ocean, waves and beaches, Surfrider's role is to ensure that coastal and ocean ecosystems and sustainable human uses are protected. We have an <u>official policy</u> about renewable ocean energy development that lays out what Surfrider wants to see in a proposed project. Surfrider is not looking at these projects in a vacuum, but weighing the impacts from offshore wind development with the impacts from climate change. As these projects move forward, Surfrider will provide facts, facilitate dialogue between stakeholders, government agencies, and project developers, and provide public comment on relevant documents to ensure that projects are designed and implemented in a way that protect coastal resources, marine life, and recreation opportunities.

3. What agencies and governments must approve an offshore wind project?

Offshore wind projects generally require the approval of federal, state, and local government agencies and bodies. Federal government agencies have authority past three miles from shore, but power cables will need to cross state lands and waters, requiring state approval. States also have some authority beyond three miles offshore through the Coastal Zone Management Act, which could allow them to stop wind

¹BOEM. South Fork Wind Farm and South Fork Export Cable Project Draft Environmental Impact Statement. January 2021. *Available at:*

www.boem.gov/sites/default/files/documents/renewable-energy/SFWF-DEIS 0.pdf

² BOEM. 2013. Commercial Lease of Submerged Land For Renewable Energy Development On the Outer Continental Shelf. OCS-A 0486. *Available at*:

www.boem.gov/Renewable-Energy-Program/State-Activities/RI/Executed-Lease-OCS-A-0486.aspx

projects.³ Local permits may also be required when power cables come ashore. The <u>Bureau of Ocean Energy Management</u> is the lead federal authority for renewable energy on the Outer Continental Shelf, and the <u>Army Corps of Engineers</u> is the lead federal agency concerning project siting in the Great Lakes. Other federal agencies weigh in with scientific information and other information like <u>National Oceanic and Atmospheric Administration</u> (NOAA), <u>U.S. Department of Defense</u> (DOD), <u>U.S. Department of Energy</u> (DOE), <u>U.S. Coast Guard</u>, and <u>U.S. Fish and Wildlife Service</u> (USFWS).⁴

4. How can the public be involved?

BOEM has a few different public engagement opportunities throughout its offshore wind permit process. Generally, the public can comment when BOEM designates an official Wind Energy Area offshore. A second chance occurs when BOEM leases that area to energy companies. A third and fourth chance is when a company submits a "Site Assessment Plan", and then finally, a "Construction and Operation Plan". ^{5, 6} Contact Matt Gove, Surfrider's Mid Atlantic Policy Manager, for more information about engaging in the public process for this and other offshore wind projects in the Mid Atlantic Region: mgove@surfrider.org.

5. Why now and why New York?

Offshore wind energy development has been successful in Europe for decades, and has been increasingly discussed as a solution to carbon pollution in the US.⁷ The negative effects and increasing threats of climate change are pushing states to reduce their reliance on fossil fuels, and invest in renewable power. In response to a need for new energy production in Eastern Long Island, the Long Island Power Authority (LIPA) issued a request for proposals (RFP) to create an additional power supply in Eastern Long Island.⁸ The South Fork Wind Farm Project was chosen in response to this competitive RFP. The US East coast is an economically attractive location for offshore wind energy

³ NOAA. 2018. Coastal Zone Management Act. NOAA Office for Coastal Management. *Available at*: coast.noaa.gov/czm/act/

⁴ Federal Register. Renewable Energy Program Regulations (30 CFR 585). *Available at*: www.boem.gov/uploadedFiles/30_CFR_585.pdf

⁵ BOEM. 2016. A citizen's guide to the Bureau of Ocean Energy Management's Renewable Energy Authorization Process. *Available at*: www.boem.gov/KW-CG-Broch/

⁶ BOEM. Fact Sheet: Wind energy commercial leasing process. *Available at*: www.boem.gov/Commercial-Leasing-Process-Fact-Sheet/

⁷ Gilman, P., Maurer, B., Feinberg, L., Duerr, A., Peterson, L., Musial, W., Beiter, P., Golladay, J., Stromberg, J., Johnson, I., Boren, D. & Moore, A. 2016. National offshore wind strategy: Facilitating the development of the offshore wind industry in the United States. US Department of the Interior & Department of Energy. *Available at*: www.boem.gov/National-Offshore-Wind-Strategy

⁸ PSEG Long Island LLC. 2015. Request for Proposals South Fork Resources (2015 SF RFP). *Available at:* www.psegliny.com/aboutpseglongisland/proposalsandbids/2015southforkrfp

due to the high winds offshore and large populations that live near the coast. This wind energy project would help New York reach its goal of having 50% of the state's electricity sourced from renewable energy by 2030. 10

6. Why don't we just put the turbines on land?

The main benefits to placing turbines offshore instead of on land include access to higher wind speeds and more open space. Higher and more consistent wind speeds are available offshore, which means offshore production can generate greater amounts of electricity per turbine, which means less turbines. Onshore and offshore turbines require a lot of open space, which can be difficult to find in densely populated coastal areas. Additionally, setback rules between private property and wind turbines make finding sufficient space for wind farms on land even more difficult, as many people do not want wind turbines close to where they live. Compared to solar energy, one 10MW offshore wind turbine produces the same amount of energy as about 50 acres of land based solar panels.

7. What kind of scientific studies are being done to record data about the ecosystem before and after installation of these turbines?

Orsted must gather baseline environmental data in the proposed development area (as required by the National Environmental Policy Act and other regulations). The Bureau of Ocean Energy Management (BOEM) is also continually funding research on the effects of wind turbines on their surrounding ecosystems. For example, BOEM is researching a whole host of topics in regards to offshore wind, including the effects of electromagnetic fields on elasmobranchs (sharks, rays, skates); effects of supporting infrastructure on wildlife like birds, bats, and fish, as well as cultural and archaeological resources; and behavioral effects of sound sources on marine mammals and other

⁹ Gilman, P. et al. 2016. National offshore wind strategy: Facilitating the development of the offshore wind industry in the United States. US Department of the Interior & Department of Energy. *Available at*: www.boem.gov/National-Offshore-Wind-Strategy

¹⁰ New York State Gov. 2016. 2015 New York State Energy Plan. *Available at:* https://energyplan.ny.gov/Plans/2015.aspx

¹¹ Kaldellis, J.K. & Kapsali, M. 2013. Shifting towards offshore wind energy- Recent activity and future development. *Energy Policy*: Vol. 53, Pp. 136-148. *Available at*:

www.sealab.gr/download/attachments/15565224/Shifting+towards+offshore+wind+energy--Recent+activity+ and +future+development.pdf?version=1&modificationDate=1397224788000

¹² WOSU editor. 2017. Citizens debate rules on distance between wind farms and their property. WOSU Public Media, The Ohio State University. *Available at:*

radio.wosu.org/post/citizens-debate-rules-distance-between-wind-farms-and-their-property#stream/0

¹³ National Renewable Energy Laboratory. Land use requirements for solar power plants in the US. *Available at:* www.nrel.gov/docs/fy13osti/56290.pdf

protected species.¹⁴ For the Block Island Wind farm, Deepwater Wind collected scientific information two years prior to the construction of the turbines, two years during construction, and two years following construction to record environmental effects.¹⁵

8. Are there other companies and leasing areas with proposed wind projects? What will the ocean look like in 20 years in terms of wind power?

It is difficult to predict how many offshore wind turbines will eventually be installed on the East Coast, but it appears that around 2000 turbines could be constructed in the next decade. The demand for offshore wind can change due to technology advances, costs of other energy sources, politics, etc. To date, BOEM has issued 17 leasing areas on the East Coast. 16 Leases do not guarantee that those areas will be fully utilized.

HUMAN USE QUESTIONS

9. Will fishermen be able to fish between offshore wind turbines?

Recreational and commercial fishing vessels will be able to fish between the turbines; however, turbines may act as additional hazards for fishing vessels during times of poor visibility and heightened wave energy. To note, during construction safety zones will be in place around each turbine, temporarily restricting access.¹⁷ The United States Coast Guard stated that they will not restrict fishing access around offshore wind turbines and between the turbines.¹⁸ Orsted's lease also prohibits imposing long term fishing exclusion zones.¹⁹ South Fork Wind's turbines will be about one mile apart.

10. Will I be able to see the turbines from shore?

¹⁴ BOEM. 2018. Renewable energy research. *Available at:* www.boem.gov/Renewable-Energy-Environmental-Studies/

¹⁵ Tetra Tech. 2016. Site Assessment Plan: Deepwater Wind North Lease OCS-A 0486. Deepwater Wind New England LLC. *Available at:* www.boem.gov/Site-Assessment-Plan-for-OCS-A-0486

¹⁶ BOEM. 2018. Lease and Grant Information. Available at: www.boem.gov/Lease-and-Grant-Information/

¹⁷ Walsh, C. 2017. Fishermen demand answers on wind power plan. *The East Hampton Star. Available at:* http://easthamptonstar.com/Government/20171214/Fishermen-Demand-Answers-Wind-Power-Plan

¹⁸ BOEM. 2015. Fishermen Workshops: Providing input into BOEM's identification of an offshore wind energy area offshore New York. *Available at:* www.boem.gov/NY-Summary-Fisheries-Outreach-Call-Area/

¹⁹ US Department of Interior, BOEM. 2013. Commercial lease of submerged lands for renewable energy development of the Outer Continental Shelf: OCS-A 0486. *Available at:* www.boem.gov/Renewable-Energy-Program/State-Activities/RI/Executed-Lease-OCS-A-0486.aspx

A 650 foot turbine placed 23 miles offshore should only be visible on the clearest of days, or about 20% of days in the year.²⁰ At the closest point, SFW will be 35 miles offshore from Montauk Point, using turbines that will be 850 feet tall or taller. Since the South Fork Wind Farm will be over 30 miles offshore, it is not likely that the turbines will be visible from the shore very often.

11. Will offshore turbines reduce the swell that arrives on shore?

More research on this topic is needed. Surfrider could not find any anecdotal or scientific evidence of swell reduction from offshore wind turbine arrays. Turbines at this farm will be placed rather far apart, about one mile, so impacts to surfing waves are not expected. One study found that a very large array of turbines (78 thousand turbines) could reduce wind speeds, but that should not affect long-period swell, only wind driven waves.²² Another study did not find a scientifically significant difference in swell wave structure before and after passing through a turbine array.^{23, 24}

ENVIRONMENTAL IMPACT QUESTIONS

12. Will there be impacts to bats and birds?

Wind turbines on land have had substantial negative impacts to birds and bats. Total U.S estimates for bird mortality from collision with terrestrial wind turbines ranges from 140,000²⁵ to 573,000²⁶ birds per year. However, there is insufficient data on the effect of

²⁰ Sullivan, R.G., Kirchler, L.B., Cothren, J. & Winters, S.L. 2013. Offshore wind turbine visibility and visual impact threshold distances. *Environmental Practice*: Vol. 15, No. 1, Pp. 33-49. *Available at:* www.cambridge.org/core/journals/environmental-practice/article/research-article-offshore-wind-turbine-visibility

www.cambridge.org/core/journals/environmental-practice/article/research-article-offshore-wind-turbine-visibility -and-visual-impact-threshold-distances/59A51F3CD207849FC7F5BD986F15B2CB

²¹ BOEM. Mangi Environmental Group. 2012. Visualization Study for Offshore North Carolina. *Available at:*

boem.gov/sites/default/files/renewable-energy-program/State-Activities/NC/NC-Visualization-Task-Force-Pres.pdf ²² Jacobson, M.Z., Archer, C.L. & Kempton, W. 2014. Taming hurricanes with arrays of offshore wind turbines. *Nature Climate Change*: Vol. 4, Pp. 195-200. *Available at*: www.nature.com/articles/nclimate2120.

²³ Navitus Bay Development Limited. 2014. Navitus Bay Wind Park Physical Processes Assessment: Environmental Statement. Document 6.1.2.5: Vol. B, Ch. 5, Pp. 78. *Available at*:

infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010024/EN010024-000802-6.1.2. 5%20Volume%20B%20Offshore%20Chapter%205%20Physical%20Processes.pdf

²⁴ ABP Marine Environmental Research Limited. 2014. Navitus Bay Wind Park Physical Processes Assessment: Technical Appendix. Navitus Bay Development Limited, Report R.2015: Vol B. Ch. 5, Pp. 174. *Available at*: infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010024/EN010024-000843-6.2.2. 5.1%20Volume%20B%20Chapter%205%20Physical%20Processes%20Appendix%205.1.pdf

²⁵ Loss, S., Will, T., Marra, P. 2013. Estimates of bird collision mortality at wind facilities in the contiguous United States. *Biological Conservation*: Vol. 168, Pp. 201–209. *Available at:*

www.fws.gov/migratorybirds/pdf/management/lossetal2013windfacilities.pdf

²⁶ Smallwood, K. 2013. Comparing bird and bat fatality-rate estimates among North American wind-energy projects. *Wildlife Society Bulletin*: Vol. 37, No. 1, Pp. 19-33. *Available at:* onlinelibrary.wiley.com/doi/abs/10.1002/wsb.260

offshore wind turbines on birds and bats, mainly because recording bird and bat mortality offshore is very difficult (carcasses may sink or be eaten before documented by an observer).²⁷

Besides possible direct mortality from turbines, birds and bats may also be negatively affected by avoiding or being displaced by wind farms. However, some species of birds are attracted to wind farms, probably for feeding and resting opportunities. For both birds and bats, the location of the turbines is crucial to understanding impacts, especially considering migratory pathways. Lights placed on turbines could increase mortality as some species of both birds and bats are drawn to them. However, using lights that blink on and off has been shown to mitigate this issue.

When comparing bird mortality to the energy produced per gigawatt hour (GWh), wind farms may be less detrimental than nuclear or fossil fuel power plants. According to one analysis, wind farms kill roughly 0.33 birds per GWh, whereas nuclear and fossil-fueled power stations kill about 0.6 birds per GWh, and 9.4 birds per GWh respectively.³³ For further context, studies have shown that free-ranging domestic cats in the US kill 1.3–4.0 billion birds per year.³⁴

13. What are the impacts to ocean animals from increased noise?

Wind farms can increase marine noise levels during surveying, construction, and operation. Noise pollution can negatively impact a wide range of marine animals including mammals, fish, shellfish, and larvae. Depending on the proximity to the noise

27

²⁷ Ibid.

²⁸ Dierschke, V., Furness, R.W. & Garthe, S. 2016. Seabirds and offshore wind farms in European waters: Avoidance and attraction. *Biological Conservation*: Vol. 202, Pp. 59-68. *Available at*: www.sciencedirect.com/science/article/pii/S0006320716303196

²⁹ Sjollema, A., Gates, J., Hilderbrand, R. & Sherwell, J. 2014. Offshore Activity of Bats Along the Mid-Atlantic Coast. *Northeastern Naturalist*: Vol. 21, No. 2, Pp. 154-163. *Available at*: doi.org/10.1656/045.021.0201

³⁰ Voigt, C., Roeleke, M., Marggraf, L., Petersons, G., & Voigt-heucke, S.L. 2017. Migratory bats respond to artificial green light with positive phototaxis. *PLOS ONE*. *Available at*: journals.plos.org/plosone/article?id=10.1371/journal.pone.0177748

³¹ Manville, A. M. 2000. The ABCs of avoiding bird collisions at communication towers: the next steps. Proceedings of the Avian Interactions Workshop, December 2, 1999, Charleston, SC. Electric Power Research Institute (in press). *Available at:* nctc.fws.gov/resources/knowledge-resources/bird-publications/tower-collisions.html

³² Gehring, J., Kerlinger, P., & Manville, A.M. 2009. Communication towers, lights, and birds: Successful methods of reducing the frequency of avian collisions. *Ecological Applications*: Vol. 19, No.2, Pp. 505-514. *Available at*: www.opc.ca.gov/webmaster/_media_library/2016/01/Gehring-et-al-2009-Communication-Towers-Lights-and-Bird s.pdf

³³ Sovacool, B.K. 2012. The avian and wildlife costs of fossil fuels and nuclear power. *Journal of Integrative Environmental Sciences:* Vol. 9, No. 4, Pp. 255-278; Vermont Law School Research Paper No. 04-13. *Available at:* ssrn.com/abstract=2198024

³⁴ Loss, S., Will, T., & Marra, P.P. 2013. The impact of free-ranging domestic cats on wildlife of the United States. *Nature Communications*: Vol. 4, No. 1396. *Available at*: www.nature.com/articles/ncomms2380

source and loudness of the sound, responses can range from no reaction, to detection and behavioral changes, to physical injury and permanent hearing loss. Fortunately there are methods to mitigate the impacts from offshore wind noise pollution. European wind farms have used multiple techniques including seasonal and diurnal restrictions on construction and noise limits.³⁵ During construction of the Block Island Wind Farm, Deepwater Wind put in place many mitigation measures, including shutting down pile driving if marine mammals were spotted in the area.³⁶

During surveying, developers use high resolution geophysical instruments to map the seafloor. Though not as loud, constant, or widespread as seismic blasting used during oil and gas exploration, geophysical surveys for offshore wind still emit loud noises and can negatively affect marine mammals, and cause marine animals to temporarily avoid the area.³⁷

Pile driving during construction also produces loud noises. Sensors at the Block Island Wind Farm measured a peak sound pressure level of 188 underwater decibels at 500 meters during pile driving. To put that in context, some marine mammals (particularly harbor porpoise) begin to show avoidance behavior beginning at 120 underwater decibels, and rely on their hearing for navigation, communication, feeding, and general survival. Note than underwater and air decibels have different reference levels, and ears evolved to hear in water have different sensitivities than ears evolved to hear in air. All things being equal, underwater and air levels are about 62 decibels different for the same intensity of sound.

_

³⁵ Reeve, E., Drew-Murphy, J. & Pfeister, D. 2018. Briefing paper: Understanding the effects of offshore wind farms on the natural environment; Part 2. Renewable Consulting Group.

³⁶ Fiorentino, J. 2014. Issuance of incidental harassment authorizations to Deepwater Wind for the take of marine mammals incidental to construction of the Block Island wind farm and Block Island transmission system. NOAA, National Marine Fisheries Service. *Available at*: https://repository.library.noaa.gov/view/noaa/5007

³⁷ Southall, B.L., Rowles, T., Gulland, F., Baird, R.W., and Jepson, P.D. 2013. Final report of the Independent Scientific Review Panel investigating potential contributing factors to a 2008 mass stranding of melon-headed whales (*Peponocephala electra*) in Antsohihy, Madagascar. *Available at:*

 $www. cascadiares earch. org/oldsite/Hawaii/Madagascar_ISRP_Final_report.pdf$

³⁸ Miller, J., Potty, G., Lin, Y., Newhall, A., Raposa, K., Frankel, A., Giard, J., & Mason, T. 2017. Monitoring the environmental effects of construction and initial operation of the first offshore wind farm in the US. *Available at:* tethys.pnnl.gov/tethys-stories/monitoring-environmental-effects-construction-and-initial-operation-first-offshore ³⁹ National Marine Fisheries Service. 2018. 2018 Revisions to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commerce, NOAA. NOAA Technical Memorandum NMFS-OPR-59, Pp. 167. *Available at*:

www.fisheries.noaa.gov/resource/document/technical-guidance-assessing-effects-anthropogenic-sound-marine-mammal

⁴⁰ Bailey, H., Brookes, K., & Thompson, P. 2014. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. *Aquatic Biosystems*: Vol. 10, No. 8. *Available at:* www.ncbi.nlm.nih.gov/pmc/articles/PMC4172316/

For land based turbines, operational noise has been measured at 40 air decibels at a distance of 1000 feet.⁴¹ At the Block Island Wind Farm, operational noise is barely detectable at a distance of 165 feet.^{42, 43} It is possible that operational noise could cause marine animals to travel outside of their usual migration routes, and potentially away from important nurseries and feeding grounds.⁴⁴

14. What about scouring of the seafloor from the turbines?

Scouring, or erosion of the seafloor, can occur around the base of offshore wind turbines. This is caused by tidal currents, waves, and associated sediment movement around the base of the structure. If severe, scouring can reduce the structural integrity of the turbine and its ability to withstand strong winds, currents, and waves. To prevent this, wind farms have placed stones or concrete pads around turbine bases, but this only prevents scouring at the source, and many will simply experience scouring at the edge of the "bed protection." Generally, areas with stronger currents, energetic wave action, and looser sediment will experience scouring sooner. 45

15. Will there be impacts from power cable electromagnetic fields?

Power cables that connect offshore turbines to land (and to each other) will produce an electromagnetic field (EMF). There is limited research on the issue, but generally speaking EMF's are only detected by certain ocean wildlife, including some fish species, sea turtles, marine mammals like whales and dolphins, and crustaceans like lobster and crabs. These species are all able to perceive the Earth's geomagnetic field, and it is hypothesized that EMF's could cause disorientation. For instance, preliminary studies indicate that EMF's could interfere with sea turtle hatchlings' ability to navigate to important nurseries, but more information is necessary to confirm. ⁴⁶ So far, research

⁴¹ Ellenbogen, J.M., Grace, S., Heiger-Bernays, W.J., Manwell, J.F., Mills, D.A., Sullivan, K.A. & Weisskopf, M.G. 2012. Wind turbine health impact study: Report of independent expert panel. MA Department of Environmental Protection & MA Department of Public Health. *Available at:*

https://www.mass.gov/files/documents/2016/08/th/turbine-impact-study.pdf

⁴² McCann, J. 2017. The Block Island Wind Farm: What have we learned? URI Coastal Resources Center, Rhode Island Sea Grant. URI Graduate School of Oceanography. Presentation at the Southern New England Offshore Wind Science Forum, December 2017.

⁴³ Bailey, H., Brookes, K., & Thompson, P. 2014. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. *Aquatic Biosystems*: Vol. 10, No. 8. *Available at:* www.ncbi.nlm.nih.gov/pmc/articles/PMC4172316/

⁴⁴ Ibid.

⁴⁵ Whitehouse, R., Harris, J., Sutherland, J., & Rees, J. 2008. An assessment of field data for scour at offshore wind turbine foundations. Fourth International Conference on Scour and Erosion. *Available at*: izw.baw.de/publikationen/tc213/0/b 13.pdf

⁴⁶ Normandeau, Exponent, T. Tricas, and A. Gill. 2011. Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation, and Enforcement, Pacific OCS Region, Camarillo, CA. OCS Study BOEMRE 2011-09. *Available at*: https://www.boem.gov/ESPIS/4/5115.pdf

has not shown significant negative impacts to any marine species, but there are a lot of data gaps, and additional studies need to be conducted. ⁴⁷ Generally, EMFs for direct current (DC) cables are more powerful compared to alternating current (AC). ⁴⁸ Additionally, the cumulative impact of multiple power cables is unknown, as many studies assume that mobile species avoid significant impacts by simply moving away from sources of EMF. ⁴⁹ At least one DC power cable is already operating in the vicinity, the Cross Sound Cable, which runs from New Haven, CT to Shoreham, NY and can carry up to 330 MW. ⁵⁰ The earth's magnetic field is predicted to be five times greater than the EMF from the SFW power cable. ⁵¹

16. What are the cumulative impacts from constructing hundreds of turbines?

It is difficult to predict how many offshore wind turbines will eventually be installed, but to date, BOEM has issued commercial leases to 11 offshore wind development companies within 13 leasing areas on the east coast. ⁵² Leases do not guarantee that those areas will be fully utilized, but currently it looks like at least a few hundred turbines will be installed over the next five to ten years. The cumulative impacts of that amount of turbines on ocean species is basically unknown, and highlights the need for adaptive management and continued research and monitoring.

17. How deep will the power cables be under the seafloor and beach?

Cables will be placed 4-6 feet under the seafloor using a technique called "trenching". When the cable is directionally drilled under the beach, it will be a minimum of 30 below mean low tide.⁵³ Temporary habitat loss is experienced for fish, benthic species, sea turtles, and marine mammals during installation of the power cable. Overtime however, there can be habitat gains at the base of the turbine, as is seen at the Block Island Wind Farm and examples in Europe.^{54, 55}

Draft Environmental Impact Statement. January 2021. Available at:

www.boem.gov/sites/default/files/documents/renewable-energy/SFWF-DEIS 0.pdf

Draft Environmental Impact Statement. January 2021. Available at:

www.boem.gov/sites/default/files/documents/renewable-energy/SFWF-DEIS 0.pdf

⁴⁷ Ibid.

⁴⁸ Ibid.

⁴⁹ Ibid.

⁵⁰ Cross-Sound Cable Company LLC. 2006. Available at: www.crosssoundcable.com

⁵¹ BOEM. South Fork Wind Farm and South Fork Export Cable Project

⁵² Lease and Grant Information. BOEM. Available at: www.boem.gov/Lease-and-Grant-Information/

⁵³ BOEM. South Fork Wind Farm and South Fork Export Cable Project

⁵⁴ American Wind Energy Association. 2017. Photo evidence: Fish feeding frenzy at Block Island Wind Farm. *Available at:* www.aweablog.org/photo-evidence-fish-feeding-frenzy-block-island-wind-farm/

⁵⁵ Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K. & Wirtz, K.W. 2018. The large scale impact of offshore wind farm structures on pelagic primary production in the southern North Sea. Submitted to *Hydrobiologia*, May 2018. *Available at*: arxiv.org/abs/1709.02386.

18. Aren't wind turbines made from rare-earth metals and GHG intensive materials?

The construction of turbines requires the use of a lot of raw materials and, depending on the turbine selected, some amount of rare-earth metals. 56 The initial extraction of raw materials and minerals, especially neodymium oxide, can cause severe environmental and human health impacts. For instance, neodymium oxide is mainly sourced from China (as are 95% of all rare-metals)⁵⁷, where there is a lack of environmental laws surrounding mining practices. There have been multiple reports of disastrous impacts to human and environmental health due to exposure to carcinogenic, toxic, and radioactive waste produced during mining. 58 Other raw materials necessary for wind turbines include iron, steel rebar, concrete, copper, and dysprosium. This is an important issue, and more research needs to be conducted on the impacts of mineral extraction for turbines, and assurance that wind energy companies manage their supply chain to ensure that mines use safety protocols to prevent the release of harmful pollutants. To note, other energy sources also require significant use of raw materials for construction-such as nuclear power plants and oil refineries. Life cycle analysis studies found that per kWh of electricity generated, wind energy uses less water, and emits significantly less carbon dioxide, nitrogen oxide, and sulfur dioxide than fossil fuel plants. Though the construction of wind turbines is currently resource intensive, the operational phase of wind turbines results in minimal to no waste or greenhouse gas emissions. When compared to the construction needs and continual generation of high level radioactive waste from nuclear energy, or greenhouse gas emissions from fossil fuel energy, the wind industry has a much smaller environmental footprint.⁵⁹

ECONOMIC QUESTIONS

19. Will new offshore wind power projects create jobs?

According to a report funded by Oceana, adding 143 GW of offshore wind generation could create 218,000 jobs, which is double the amount expected to be provided from

⁵⁶ Wilburn, D. 2011. Wind energy in the United States and materials required for the land-based wind turbine industry from 2010 through 2030. US Geological Survey. Scientific Investigations Report 2011-5036. *Available at*: pubs.usgs.gov/sir/2011/5036/sir2011-5036.pdf

⁵⁷ Bourzac, K. 2011. The rare-earth crisis. *MIT Technology Review. Available at*: www.technologyreview.com/s/423730/the-rare-earth-crisis/

⁵⁸ Rim, K.T., Koo, K.H. & Park, J.S. 2013. Toxicological evaluations of rare earths and their health impacts to workers: A literature review. *Safety and Health at Work*: Vol. 4, No. 1, Pp, 12-26. *Available at*: www.sciencedirect.com/science/article/pii/S2093791113410028

⁵⁹ Wilburn, D. 2011. Wind energy in the United States and materials required for the land-based wind turbine industry from 2010 through 2030. US Geological Survey. Scientific Investigations Report 2011-5036. *Available at*: pubs.usgs.gov/sir/2011/5036/sir2011-5036.pdf

offshore oil drilling development over the same timeframe.⁶⁰ The US Department of Energy and Department of Interior estimate that the development of 86 GW of offshore wind power by 2050, would provide an increase of 160,000 jobs.⁶¹

20. Will my electricity rate go up because of offshore wind projects?

The Long Island Power Authority ("LIPA") estimates that South Fork Wind will cost the average Long Island ratepayer an additional \$1.39 to \$1.57 per month when it starts operating in 2023. 62 Generally, when energy companies build new infrastructure, customers foot the bill; however, many factors affect energy rates, including other energy projects, regulations and policies, subsidies, weather, global energy markets, transmission systems, and power purchase agreements. 63 A 2016 report by the Department of Energy (DOE) found that the cost of offshore wind energy is steadily dropping and is already cost competitive with other energy sources. 64 65

21. Who is paying for this project?

The privately-owned company, Orsted, will pay the upfront project costs but, as stated above, much of those costs will be transferred to consumers via rate changes (at current rates, that's an estimated additional \$1.39 to \$1.57 increase monthly by 2022).

22. How much is LIPA paying Orsted for the energy from the South Fork project and for how long?

On January 25, 2017, the Long Island Power Authority (LIPA) voted to approve a 20 year power purchase agreement (PPA) with Deepwater Wind for energy from the South Fork

⁶⁰ Oceana. 2016. Offshore energy by the numbers, an economic analysis of offshore drilling and wind energy in the Atlantic. *Available at*: usa.oceana.org/sites/default/files/offshore_energy_by_the_numbers_report_final.pdf

⁶¹ Departments of the Interior and Energy. 2016. National Offshore Wind Strategy. Available at: www.boem.gov/National-Offshore-Wind-Strategy

⁶² LIPA. South Fork Wind Farm Fact Sheet. *Available at:*

www.lipower.org/wp-content/uploads/2019/10/LIPA-First-Offshore-Wind-Farm-Doc-V19_102819-FINAL.pdf ⁶³ US Energy Information Administration. 2018. Electricity explained: Factors affecting electricity prices. US Department of Energy. *Available at:*

www.eia.gov/energyexplained/index.cfm?page=electricity factors affecting prices

⁶⁴ Musial, W., Beiter, P., Schwabe, P., Tian, T., Stehly, T., & Spitsen, P. 2017. 2016 Offshore wind technologies market report. US Department of Energy, Office of Energy Efficiency & Renewable Energy. *Available at:* energy.gov/eere/wind/downloads/2016-offshore-wind-technologies-market-report

⁶⁵ Fares, R. 2017. Wind energy is one of the cheapest sources of electricity, and it's getting cheaper. *Scientific American Unplugged*. *Available at:*

blogs.scientificamerican.com/plugged-in/wind-energy-is-one-of-the-cheapest-sources-of-electricity-and-its-getting -cheaper/

⁶⁶ LIPA. South Fork Wind Farm Fact Sheet. *Available at:* www.lipower.org/wp-content/uploads/2019/10/LIPA-First-Offshore-Wind-Farm-Doc-V19_102819-FINAL.pdf

Wind Farm.⁶⁷ Unfortunately, the price Orsted will receive per kilowatt delivered to shore from the South Fork project is confidential and not available to the public, but is estimated to be about 16 cents per kilowatt for the initial 90MW contract, and 9 cents for the added 40MW contract.⁶⁸

ENGINEERING QUESTIONS

23. How big are the offshore turbines?

Orsted has not chosen which turbine they will use, but a popular choice right now is the 12MW GE Haliade turbine, which is about 850 feet tall. The Block Island Wind Farm consists of five, 689 foot tall wind turbines. For comparison, that's twice the size of the statue of liberty, with each producing 6MW of electricity. ⁶⁹ Turbines that generate more electricity are expected to be taller, with eight MW turbines approaching 700 feet tall and ten MW turbines approaching 800 feet tall. ^{70,71}

24. Won't rough conditions and hurricanes destroy the turbines?

At this point, we don't know the exact turbine Orsted will use for this project, so we don't know what wind speeds the turbines will be able to withstand. A 2017 study showed that current turbine designs cannot survive wind speeds and wind shear from a Category 5 hurricane.⁷² Yet onshore turbines used in Texas withstood wind speeds over 130 mph from Hurricane Harvey, a Category 4 hurricane.⁷³ With recent Atlantic hurricanes reaching sustained winds of 185 mph or more,⁷⁴ Surfrider would like to see that these turbines will be able to handle similarly severe storm conditions. We should note that turbines are designed to stop operating at a "cut-out" wind speed to prevent

⁶⁷ Long Island Power Authority. January 25, 2017. Minutes of the 266th Meeting. *Available at:* www.lipower.org/wp-content/uploads/2017/03/APPROVED20Board20Minutes20of20January202520201720Meeting1.pdf

⁶⁸ LIPA. South Fork Wind Farm Fact Sheet. *Available at:*

www.lipower.org/wp-content/uploads/2019/10/LIPA-First-Offshore-Wind-Farm-Doc-V19_102819-FINAL.pdf 69 Garfield, L. 2017. America's first offshore wind farm launched with GE turbines twice as tall as the Statue of

Liberty. *Business Insider*. *Available at*: www.businessinsider.com/ge-wind-farm-block-island-2017-5 ⁷⁰ American Superconductor Corp. 2012. SeaTitan. *Available at*:

www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-sheet/

⁷¹ Siemens. Offshore Wind Turbine SG 8.0-167 DD. *Available at*:

www.siemensgamesa.com/en-int/products-and-services/offshore/wind-turbine-sg-8-0-167-dd

⁷² Worsnop, P.W., Lundquist, J.K., Bryan, G.H., Damiani,R. & Musial, W. 2017. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards. *Geophysical Research Letters*: Vol. 44, No. 12, Pp. 6413-6420. *Available at*: agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL073537

⁷³ Cleanenergy.org via Reve. 2017. Texas wind turbines survive hurricane harvey. *Available at*: www.evwind.es/2017/08/30/texas-wind-turbines-survive-hurricane-harvey/60862

⁷⁴ National Weather Service. Nd. Detailed Meteorological Summary on Hurricane Irma. *Available at:* https://www.weather.gov/tae/Irma_technical_summary

unnecessary strain on the rotor blades, but again this varies by turbine type. ⁷⁵ For example, turbines at the Block Island Wind Farm in Rhode Island shut off when winds exceed 55 mph, and then power back up once winds diminish. Thorough and ongoing maintenance, monitoring, and inspections will be critical to ensure that turbines maintain structural integrity and the ability to handle extreme weather.

25. How often do the turbines require maintenance?

The turbines used in the Block Island Wind Farm require routine maintenance every two weeks.⁷⁶ As the turbines that will be used for the South Fork project are still unknown, their maintenance schedule is also unknown, but probably similar.

26. What is the lifespan of each turbine and what happens when they are obsolete? Generally, turbines are rated by the manufacturers to operate for 25 years.⁷⁷ The federal government requires that developers submit a decommissioning plan and post a bond to cover the cost of those decommissioning activities, including removing turbines from the water.^{78, 79} At the end of a turbine's useful life, developers have the option to refurbish or repower it (with additional approvals and permits), yet previous plans to refurbish farms in European waters have failed due to technical difficulties and cost concerns.⁸⁰ During decommissioning, some structures must be removed—including the turbines, all associated oils and lubricants, and the foundation attachment ("transition piece"). The foundations will be cut under the substrate and the power cables removed.

27. What happens when it's not windy? How is energy from the turbines stored? When it's not windy turbines create less energy, and power companies will need to move more energy into the region from other sources using the transmission grid.

⁷⁵ US Department of Energy. 2017. How do wind turbines survive severe storms? Office of Energy Efficiency and Renewable Energy. *Available at:* energy.gov/eere/articles/how-do-wind-turbines-survive-severe-storms

⁷⁶ Communication with Jennifer Garvey, Development Manager for Long Island. Deepwater Wind. April 2018.

⁷⁷ Renewables First. 2015. How long does a wind turbine last? *Available at:*

www.renewablesfirst.co.uk/windpower/windpower-learning-centre/how-long-do-wind-turbines-installations-last/ ⁷⁸ BOEM. 2013. Commercial Lease of Submerged Land For Renewable Energy Development On the Outer Continental Shelf. OCS-A 0486. *Available at*:

www.boem.gov/Renewable-Energy-Program/State-Activities/RI/Executed-Lease-OCS-A-0486.aspx

⁷⁹ BOEM. 2016. Guidelines for Information Requirements for a Renewable Energy Construction and Operations Plan (COP). *Available at:* www.boem.gov/COP-Guidelines/

⁸⁰ Vattenfall. 2016. The First Decommission in the World of an Offshore Wind Farm Is Now Complete. Vattenfall Press Release. *Available at:*

corporate.vattenfall.com/press-and-media/press-releases/2016/the-first-decommission-in-the-world-of-an-offshore-wind-farm-is-now-complete/

⁸¹Topham, E. & McMillan, D. 2017. Sustainable decommissioning of an offshore wind farm. Renewable Energy: Vol. 102, Part B, Pp. 470-480. *Available at*: www.sciencedirect.com/science/article/pii/S0960148116309430#bib9

Some energy from wind turbines could be stored in batteries, as the price of such systems continues to come down and are seen as a crucial part of the energy transmission system. As with other sources, energy will be held in the transmission system and managed on a regional scale.⁸²

28. Do turbines have back up generators to provide energy for basic functions when the wind dies?

No.⁸³ If the turbine cannot create its own power from the wind, they will use backup batteries. Turbines can be equipped with diesel generators in the event of an emergency.⁸⁴ Turbines require power to keep out moisture, run lights, and direct the blades into the wind in the event of strong winds.⁸⁵

29. Are there other structures besides the turbines that need to be placed on the seafloor or on platforms, like substations or anything?

Yes. In addition to wind turbines, all offshore wind farms also require transmission lines to transport energy from turbines to the shore. These are referred to as "power cables," and Orsted plans to bury these cables in the seafloor with a technique called jet plowing. SFW will build one offshore substation. The need for substations is dependent on the distance from the coast, quantity of turbines, distance between turbines and amount of electricity generated; with greater distances and quantities increasing the need. Substations would be located on similar foundations as a turbine would, about 60 feet out of the water, with a platform about the size of a small house. Deepwater's Block Island Wind Farm did not require an offshore substation, but it did require the construction of one onshore to help with electricity distribution. The South Fork Wind project will include one substation.

30. Do turbines have any fuel or other toxic materials in them?

www.boem.gov/sites/default/files/documents/renewable-energy/SFWF-DEIS 0.pdf

⁸² American Wind Energy Association. Nd. Wind Energy and Storage. *Available at*: www.awea.org/wind-energy-storage

⁸³ US Department of Energy. Nd. The inside of a wind turbine. *Available at*: www.energy.gov/eere/wind/inside-wind-turbine-0

⁸⁴ BOEM. South Fork Wind Farm and South Fork Export Cable Project Draft Environmental Impact Statement. January 2021. *Available at:*

⁸⁵ Göksu, O. et al. 2017. Black start and island operation capabilities of wind power plants. *Proceedings of the 16th Wind Integration Workshop. Available at*:

www.promotion-offshore.net/fileadmin/PDFs/Conference_Paper_Black_Start_and_Island_Operation_Capabilities of Wind Power Plants with note.pdf

⁸⁶ Barberis, N, Todorovic, J. & Ackermann, T. 2006. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. *Electric Power Systems Research*: Vol. 76, No. 11, Pp. 916-927. *Available at:* www.sciencedirect.com/science/article/pii/S0378779605002609

⁸⁷ Trodson, L. 2018. Wind farm blamed for higher mainland power rates. *Block Island Times*.

Wind turbines do not have any fuel in them; however, bearings within a wind turbine gearbox need lubrication about every 8 to 12 months, either with synthetic or petroleum based oil. Industry recommends the use of synthetic oil⁸⁸ (traditionally not derived from petroleum)⁸⁹ or biodegradable lubricants, like vegetable oils, for offshore applications.⁹⁰ Turbines can also require grease and hydraulic fluid for certain gears, bearings, and hydraulic systems.⁹¹ In total, each turbine could include up to 215 gallons of lubricating oils.⁹² If the turbines are "direct drive", they will not require lubrication.⁹³ A review of chemical contaminants from offshore wind farms in European waters listed accidental spills of lubricating oils or hydraulic fluid and leached metals from "sacrificial anodes" (charged metals brushed onto boat or turbine surfaces to protect against corrosion) as potential sources. These metals include aluminum, copper, and zinc, which can be toxic to marine life pending concentration and oxidation state.⁹⁴ Additionally, some wind farms include substations that can contain fuel and oil.⁹⁵ Substations and turbines are equipped with collection systems to prevent oil and lubricants from being released into the environment in the event of a leak.⁹⁶

31. Can offshore wind turbines be converted to oil and gas drilling platforms?

A wind turbine has never been converted to an oil and gas drilling platform. Such an activity would require significant construction and design changes.⁹⁷ Additionally, the permits required from state and federal agencies are specific to wind production only.⁹⁸,

https://knowledge.ulprospector.com/7157/lmf-positive-spin-wind-turbine-lubricants/

⁸⁸ Barr, D. 2001. Modern wind turbines: a lubrication challenge. *Machinery Lubrication. Available at*: www.machinerylubrication.com/Read/395/wind-turbine-lubrication

⁸⁹ Wright, J. 2011. The basics of synthetic oil technology. *Machinery Lubrication*. *Available at*: www.machinerylubrication.com/Read/28671/basics-of-syntic-oil-technology

⁹⁰ Sotaventogalicia. Nd. Non toxic, biodegradable and renewable lubricants for wind turbines. *Available at*: www.sotaventogalicia.com/en/projects/non-toxic-biodegradable-and-renewable-lubricants-for-wind-turbines

⁹¹ Dutta, S. 2017. A positive spin for wind turbine lubricants. *Available at*:

⁹² BOEM. 2013. Environmental Risks, Fate, and Effects of Chemicals Associated with Wind Turbines on the Atlantic Outer Continental Shelf. *Available at*: www.boem.gov/ESPIS/5/5330.pdf

⁹³ American Superconductor Corp. 2012. SeaTitan. *Available at:* www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-sheet/

⁹⁴ Tornero, V. & Hanke, G. 2016. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. *Marine Pollution Bulletin*: Vol. 112, No. 1–2, Pp. 17-38. *Available at*: www.sciencedirect.com/science/article/pii/S0025326X16304957

⁹⁵ Moffat & Nichol. 2015. Offshore substation design development of standards. Report developed for Bureau of Safety and Environmental Enforcement & BOEM. *Available at:* www.boem.gov/723AA/

⁹⁶ BOEM. 2013. Environmental Risks, Fate, and Effects of Chemicals Associated with Wind Turbines on the Atlantic Outer Continental Shelf. *Available at*: www.boem.gov/ESPIS/5/5330.pdf

⁹⁷ Fugro Marine GeoServices. 2017. Geophysical and Geotechnical Investigation Methodology Assessment for Siting Renewable Energy Facilities on the Atlantic OCS. US Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs, OCS Study BOEM 2017-049. Pp. 1.4-1.6. *Available at:* www.boem.gov/G-and-G-Methodology-Renewable-Energy-Facilities-on-the-Atlantic-OCS/

⁹⁸ Renewable Energy Program Regulations (30 CFR 585). Bureau of Ocean Energy Management. *Available at:* www.boem.gov/uploadedFiles/30_CFR_585.pdf

⁹⁹ If you look at photos of offshore wind turbines and offshore oil platforms, they are physically very different. Additionally, a "transformed turbine" would need to be located in the same vicinity as oil and gas reserves, and accompanied by all the necessary support structures for oil and gas collection and transport.

32. Will there be any structures on land to accompany the project?

Each project is unique, but every offshore wind farm has to land its power cable onshore to connect to the electricity grid. The onshore landing site generally has little physical impact, but it depends on the specifics of each local coastal environment and intertidal zone. Where the connection to the electric grid occurs, a facility is generally needed to house the connection hardware. For the South Fork Project, the proposed cable will connect to a new substation on land owned by the power company on Cove Hollow Road in East Hampton, after landing in Wainscott.¹⁰⁰

⁹⁹ BOEM. 2013. Commercial Lease of Submerged Land For Renewable Energy Development On the Outer Continental Shelf. OCS-A 0486. *Available at*:

www.boem.gov/Renewable-Energy-Program/State-Activities/RI/Executed-Lease-OCS-A-0486.aspx ¹⁰⁰ East End Beacon. 2017. Deepwater wind picks Wainscott cable crossing, gears up for permitting for South Fork Wind Farm. *Available at*:

www.east end be a con. com/deep water-wind-picks-wain scott-cable-crossing-gears-up-for-permitting-for-south-fork-wind-farm/